2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
展望2023:值得关注的十大网络安全趋势******
开栏的话:今年是全面贯彻落实党的二十大精神的开局之年。即日起,本版开设“前沿观点”专栏,翻译引介国际信息通信行业的前沿观点,聚焦信息通信领域的动态和发展,认真贯彻落实中央经济工作会议部署要求,为我国信息通信行业高质量发展作出应有的贡献。欢迎广大读者来信提出相关批评建议。
又是网络安全动荡的一年。复杂多变的国际局势加剧了国家间的数字冲突。加密货币市场崩溃,数十亿美元从投资者手中被盗。黑客入侵科技巨头,勒索软件继续肆虐众多行业。
信息安全传媒集团(Information Security Media Group)就2023年值得关注的事件咨询了一些行业领先的网络安全专家,内容涵盖了影响安全技术、领导力和监管等层面新出现的威胁与不断发展的趋势。这是对未来一年的展望。
网络犯罪分子将加大对API漏洞的攻击力度
随着组织越来越依赖开源软件和自定义接口来连接云系统,API(应用程序接口)经济正在增长。API攻击导致2022年发生了几起引人注目的违规事件,其中包括发生在澳大利亚电信公司Optus的违规事件。专家预计,新的一年网络犯罪分子会加大对API漏洞的攻击力度。
攻击者将瞄准电网、石油和天然气供应商以及其他关键基础设施
关键基础设施可能成为攻击者的主要目标。许多工业控制系统已有数十年历史,易受到攻击。事实上,此前IBM X-Force观察到针对TCP端口的对抗性侦察增加了2000%以上,这可能允许黑客控制物理设备并进行破坏操作。专家警告,准备好应对针对电网、石油和天然气供应商以及其他关键基础设施目标的攻击。
攻击者将增加多因素身份验证(MFA)漏洞利用
多因素身份验证(MFA)曾被认为是身份管理的黄金标准,为密码提供了重要的后盾。2022年发生了一系列非常成功的攻击,使用MFA旁路和MFA疲劳策略,结合久经考验的网络钓鱼和社会工程学,这一切都发生了变化。攻击者将会增加多因素身份验证漏洞利用。
勒索软件攻击将打击更大的目标并索取更多的赎金
勒索软件攻击在公共和私营机构激增,迫使受害者支付赎金的策略已扩大到双倍甚至三倍的勒索。由于许多受害者不愿报案,没有人真正知道事情是在好转还是在恶化。专家预计会有更多类似的情况发生,勒索软件攻击会击中更大的目标并索取更多的赎金。
攻击者将瞄准大型的云企业
数字化转型正在推动向公有云的大规模迁移。这种趋势始于企业部门,并扩展到大型政府机构,创造了复杂的混合和多云环境的大杂烩。应用程序的容器化加剧了恶意软件的感染,今年我们看到了针对AWS云的无服务器恶意软件的引入。随着越来越多的数据转移到云上,应高度关注攻击者是否会瞄准主要的云超大规模应用程序。
零信任将得到更广泛的采用
零信任的原则自2010年就已出现,但仅在过去几年中,网络安全组织和供应商社区才接受最小特权的概念并不断验证防御。此前,美国国防部宣布其零信任战略,这种方法得到了重大推动。随着黑客轻松地跨IT部门横向移动,组织希望实现防御现代化。专家预计零信任会得到更广泛的采用。
首席安全官将获得更好的个人保护谈判合同
2022年10月,优步前CSO乔·苏利文(Joe Sullivan)因掩盖2016年数据泄露事件被定罪,这在网络安全领域引发了不小的冲击波。刑事责任让高级安全领导者重新考虑他们在组织中的角色。首席安全官或将被提供更多人身保护的合同。
网络保险的式微将增加企业的财务风险
第一份网络保险政策是在20多年前制定的,但勒索软件攻击造成的恢复成本和业务损失呈指数级增长。事实上,大型医疗机构的损失通常超过1亿美元。因此,网络保险公司正在提高费率或完全退出该业务。网络保险的可用性将继续枯竭,增加企业的财务风险。
政府机构将对加密货币公司实施更严格的控制
一系列违规行为、市场价值的重大损失和FTX加密货币交易所丑闻使加密货币世界在2022年陷入混乱。寻求政府机构对加密货币公司实施更严格的控制,以保护投资者、打击洗钱和提高安全性。
组织将调整自身提供教育和认证计划的方式
多数大型公司多年来一直提供网络安全意识培训,但似乎并没有奏效。更糟糕的是,越来越难找到熟练的网络安全资源。未来,组织将积极寻找改变自身提供教育和认证计划的方式,着眼于更积极地学习、职业道路规划和提高信息安全人员的技能。
(作者:作者:安娜·德莱尼卡尔·哈里森 翻译:方正梁)
(文图:赵筱尘 巫邓炎)